
Windows 95 Tray Icons
by Marco Cantù

In the DOS era there were TSR
programs and in Windows 3.1

some applications run in an icon-
ized form, but in Windows 95 we
have tray icons.

In the lower right corner of the
screen, near the clock, there is
some space (the TaskBar tray) you
can use to show your programs or
utilities. This implies removing the
standard TaskBar icon and provid-
ing a popup menu when the user
right clicks on the icon. Besides
this, there is just one API function
involved, Shell_NotifyIcon. So, at
first sight, writing a similar pro-
gram in Delphi 2 seems quite
simple. The problem is that there
are a couple of tricks you have to
use to make the application behave
properly...

The Shell_NotifyIcon Function
The only API function involved is
very simple. It has two parameters:
a pointer to a TNotifyIconData data
structure and a flag indicating
whether you want to add, remove
or modify the icon. The first field of
the data structure (cbSize) is its
size (which is used by the system
to determine the version), then
there is the handle of the window
the TrayIcon should send notifica-
tions to (hWnd) and the identifier of
the icon (uID), useful if an applica-
tion has several icons. Then comes
the uFlags field, with three possible
flags (nif_Message, nif_Icon and
nif_Tip), indicating which of the
final three fields is valid: uCallback-
Message (the wm_User message sent
to the handle to notify a user action
on the icon), hIcon (the icon to dis-
play) and szTip (the text of the tip
displayed when the mouse moves
over the icon).

In practice, besides the icon and
the tip, the other fields of this
structure indicate the window to
notify and the message to send to
it. In fact, when the user interacts
with the tray icon, it sends back to
the given window a user-defined
message passing as parameters

the action performed by the user
on the icon (typically a mouse mes-
sage) and the id given to the icon.

An Example Of The Call
In Listing 1 you can see an example
of how to call the function to create
a new tray icon and in Figure 1 you
can see its effect. This code is
preceded by the definition of the
message constant:

const
 wm_IconMessage = wm_User;

How do we handle a message? Sim-
ply by adding a new message han-
dler method to the form receiving
the message:

public
 procedure IconTray(
 var Msg: TMessage);
 message wm_IconMessage;

Inside the message handler we can
perform different actions, depend-
ing on the user operation (passed
in lParam):

if Msg.lParam = wm_rbuttondown
 then...

A Full-Blown Example
Instead of just showing you some
small code excerpts, I decided to
build a full blown program, extend-
ing an example from my book
Mastering Delphi 2. The example
program basically shows the
amount of free memory using two
gauge controls, as you can see in
Figure 2.

The program is based on a timer,
which repeatedly calls the API
function GlobalMemoryStatus, used
to retrieve the amount of physical
and free RAM, and the amount of
physical and free total memory
(swap file plus RAM). The API func-
tion GlobalMemoryStatus fills a
TMemoryStatus structure with these
and other values you can find in the
Win32 API help file.

In Listing 2 you can see the
source code of the original version
of the example. It determines the
Progress property of the two
gauges, sets the caption of the
label, then chooses a proper icon.

➤ Figure 2: The original main
window of the example

var nid: TNotifyIconData;
begin
 nid.cbSize := sizeof(nid);
 nid.wnd := Handle;
 nid.uID := 1; // icon ID
 nid.uCallBackMessage := wm_IconMessage;
 nid.hIcon := Icon.Handle;
 nid.szTip := ’Free memory’;
 nid.uFlags := nif_Message or
 nif_Icon or nif_Tip;
 Shell_NotifyIcon(NIM_ADD, @nid);

➤ Listing 1: Calling Shell_NotifyIcon

➤ Figure 1: A custom tray icon

10 The Delphi Magazine Issue 12

The green color indicates free
RAM, the yellow icon indicates full
RAM but available virtual memory,
the red one indicates that the free
memory is dangerously low (which
means the swap file has filled your
hard disk).

The first change I’ve made is to
show the amount of free and total
memory:

Label1.Caption := Format(

 ’RAM:’#13’%s’#13’(%s)’,

 [FmtMem(MemInfo.dwAvailPhys),

 FmtMem(MemInfo.dwTotalPhys)]);

The same code is applied to the
other label as well. The FmtMem func-
tion is a custom routine I’ve written
to make the information more read-
able, adding the KB or MB strings to
the proper value:

function FmtMem(N: Integer):
 string;
begin
 if N > 1024*1024 then
 FmtMem :=
 Format(’%.1f MB’,
 [n / (1024*1024)])
 else
 FmtMem :=
 Format(’%.1f KB’,
 [n / 1024])
end;

You can see an example of the up-
dated output in Figure 3. But the
key change I’ve made to the
Timer1Timer method is the code
which updates the tray icon. Since
the program already selects an
icon for the form, I’ve updated it
simply by selecting the new icon
and a proper message for the tray:

nid.hIcon := Icon.Handle;
strcopy(nid.szTip,
 PChar(Caption));
nid.uFlags :=
 nif_Icon or nif_Tip;
Shell_NotifyIcon(
 NIM_MODIFY, @nid);

This code simply updates the nid
structure with the icon and the
caption (after a cast to PChar) then
updates the icon. In the example I
declare the nid structure as a field
of the form, so that I can fill it when
the form is created with the code in

Listing 1 (showing the tray icon for
the first time), then update only the
few fields that change.

When the program terminates, in
the OnDestroy event handler the
icon is removed with yet another
call to Shell_NotifyIcon:

nid.uFlags := 0;
Shell_NotifyIcon(NIM_DELETE,
 @nid);

If you forget to remove the icon, it
simply disappears the first time
you move the mouse over it, but it
is certainly better to remove it
when the application is closed.

Hiding The Main Window
The main form of this application
(shown in Figure 3) should become
visible only when the user double-
clicks on the icon in the tray. This
is not too difficult to accomplish.
Simply add a line to the source
code of the project:

Application.ShowMainForm :=
 False;

before you call the CreateForm
method. Then use these two lines
to show the form:

procedure TMemForm.Details1Click(

 Sender: TObject);
begin

 ShowWindow(

 Handle, sw_ShowNormal);
 SetForegroundWindow(Handle);

end;

The second line is required when

another application is active and
you click the icon. This method is
associated with the default item of
a popup menu component I’ve
added to the form. The other items
are Close and About. The popup
menu is not connected to the form,
but displayed when a user right-
clicks on the icon, as you can see in
Figure 4. When the user double
clicks on the icon the form is imme-
diately displayed, as you can see in
the code in Listing 3. By the way,
these two choices (right click for
the local menu and left double click

procedure TMemForm.Timer1Timer(Sender: TObject);
var MemInfo : TMemoryStatus;
begin
 MemInfo.dwLength := Sizeof(MemInfo);
 GlobalMemoryStatus(MemInfo);
 RamGauge.Progress := MemInfo.dwAvailPhys div
 (MemInfo.dwTotalPhys div 100);
 VirtualGauge.Progress := MemInfo.dwAvailPageFile div
 (MemInfo.dwTotalPageFile div 100);
 Caption := Format(’Memory: = %d - %d’,
 [RamGauge.Progress, VirtualGauge.Progress]);
 // set icon color
 if RamGauge.Progress > 5 then
 Icon.Handle := LoadIcon(HInstance, ’GREEN’)
 else if VirtualGauge.Progress > 20 then
 Icon.Handle := LoadIcon(HInstance, ’YELLOW’)
 else
 Icon.Handle := LoadIcon(HInstance, ’RED’);
end;

➤ Listing 2: The original version of the Timer response method

➤ Figure 4: The popup menu of
the tray icon

➤ Figure 3: The updated output
with more details

12 The Delphi Magazine Issue 12

for the default action are manda-
tory in the Windows User Interface
guidelines).

Again we have to call the
SetForegroundWindow function, but
this time it serves to display the
popup menu properly (that is, in
front of everything else). Try com-
menting out this line of code and
you’ll see what happens: the popup
menu of the tray icon remains on
the screen even when you activate
another program.

The Close menu command closes
the form. However, I want to be
able to simply hide the form when
the user clicks on its Close button.
The solution? I’ve set a Closing flag
to False at the beginning, then I’ve
written this code for the OnClose
event handler:

procedure TMemForm.FormClose(

 Sender: TObject;

 var Action: TCloseAction);

begin

 if not Closing then begin

 Action := caNone;

 ShowWindow(Handle, sw_Hide);

 end;

end;

Strangely enough, setting Action to
caHide terminates the program, so
I call ShowWindow to hide the form.
When I really want to close the
form, I set Closing to True, as in the
handler of the OnClick event of the
Close menu item:

procedure TMemForm.Close1Click(

 Sender: TObject);

begin

 Closing := True;

 Close;

end;

Hiding The TaskBar Icon
So far we’ve been able to show a
tray icon, update it when the
system status changes (using a
timer) and let a user select a couple
of commands from a popup menu
connected with the icon. And
we’ve been able to fix a Windows 95
glitch by calling the function
SetForegroundWindow function be-
fore the popup menu is displayed.

However, there is still one big
problem. When you run the pro-
gram the main form is hidden but

the application window is visible,
resulting in an application icon in
the task bar, plus the icon in the
tray area of the TaskBar. This is not
what these kind of applications
generally do.

How can we hide the TaskBar
icon, representing the application?
The first idea is to hide its window
(Application.Handle) but this
means the TaskBar icon is created
and displayed first, then it is re-
moved. You’ll probably notice only
a small flicker, but this is far from
professional.

An alternative is to disable the
creation of the application window,
by setting the global variable
IsLibrary to True. In fact, looking at
the VCL source code in the con-
structor TApplication.Create you
can see the following code:

if not IsLibrary then
 CreateHandle;

So we can make Delphi think we are
a DLL and do not require a main
window. This is a risky trick and
I’ve found some strange behaviour
when you close the program (the
OnDestroy event handler is not
called). For this reason I’ve de-
cided to set IsLibrary to True and
then set it back to False as soon as
possible. But the real problem is to
set this global variable to True be-
fore the global Application object
is created. This happens in the in-
itialization section of the Controls
unit. So the question becomes, how
can we execute some code before
this unit is initialized? Writing
something like:

IsLibrary := True;
Application.CreateForm(
 TMemForm, MemForm);
Application.Run;

doesn’t help at all. In fact units are
initialized before Delphi executes
the code of the project file. The
solution lies in the fact that units
are initialized in the order they are
listed in the project file. By default
this is:

uses
 Forms,
 Resform in
 ’RESFORM.PAS’ {MemForm};

However, ResForm includes Forms
(which includes Controls) so even
in the initialization code of that unit
it is already too late. To solve the
problem I’ve added a new unit to
the program, with this plain code:

unit RunFirst;
interface
implementation
initialization
 IsLibrary := True;
end.

Then I’ve changed the source code
of the project file as shown in
Listing 4. Notice that the RunFirst
unit is listed first in the uses clause
(to initialize it first) and that I set
the IsLibrary variable back to
False immediately.

Although I cannot swear every-
thing is completely OK, I haven’t
seen any drawbacks in disabling
the creation of the application
window.

The effect of this is that as soon
as the main form becomes visible,
its icon is added to the task bar,
something you usually don’t see in
a Delphi application. This is prob-
ably not the standard (tray icon
windows usually have no entry in
the task bar even when visible), but
I think I do like it, so I’ve left the
code as it is.

procedure TMemForm.IconTray(var Msg: TMessage);
var Pt: TPoint;
begin
 if Msg.lParam = wm_rbuttondown then begin
 GetCursorPos(Pt);
 SetForegroundWindow(Handle);
 PopupMenu1.Popup(Pt.x, Pt.y);
 end;
 if Msg.lParam = wm_lbuttondblclk then
 Details1Click(self);
end;

➤ Listing 3: The handler method of the icon ‘callback’ message

August 1996 The Delphi Magazine 13

Conclusion
Writing tray icon applications is
probably the simplest thing you
can do to customize the Windows
95 shell (and the new Windows NT
4.0 shell as well). There are many
more things you can do that I’m

exploring (as you’ve probably
guessed!) for a new advanced book
I’m writing.

For sure Delphi allows you to do
everything, but at times there are
some hurdles you have to jump
over (or run around) to make

things work properly. Needless to
say these challenges can be fun and
are a good way of exploring the
Delphi architecture in detail.

Marco Cantù is a writer and
consultant who lives in Italy (when
he’s not travelling, of course). His
last book Mastering Delphi 2 for
Windows 95/NT (published by
SYBEX) is only 1000 pages so he’s
collecting new material for a fol-
low-up. You can reach Marco at
100273.2610@compuserve.com or
visit his home page at:
 http://ourworld.compuserve.com/
 homepages/marcocantu

program Mem;
uses
 RunFirst in ’RunFirst.pas’,
 Forms, Windows,
 Resform in ’RESFORM.PAS’ {MemForm};
{$R *.RES}
begin
 Application.ShowMainForm := False;
 IsLibrary := False;
 Application.CreateForm(TMemForm, MemForm);
 Application.Run;
end.

➤ Listing 4: Updated project file

14 The Delphi Magazine Issue 12

	The Shell NotifyIcon Function
	A Full-Blown Example
	Hiding the Main Window
	Hiding the Taskbar Icon
	Conclusion

